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Learning Ground Traversability from Simulations

K. Omar Chavez-Garcia, Jérfme Gued, Luca M. Gambardella and Alessandro Giust

Abstroct=— Mobile ground robsls operaling on ongtruciured
lerrain must predicl which areas of the eavironment they
are able v pass inoorder lo plan feasibde paths. We address
Iraversabilily estimation s a beightmap dassification problem:
we build a convelationa] neural network that, given an image
represenling the heightmap of a lerrain patch, predicts whether
the robot will be able fo traverse such patch from el e
right. The dassilier is troimed for a specific robol  model
(wheeled, tracked, begged, snake-like) wsing simulation data on
procedurally generated truining lerraing: the trained classifier
can be applied to unseen lurge heighimaps to vield oriented
traversability maps, amd then plam roversable paths. Ve
exbensively evaluate the approach in Simulafion on six neal-
wirbd elevation datasets, amd run o real-robot volidation in one
indvor aml one vuldour envirenment.

I, INTRORUCTION

T most indoos scenanos, mobile robots are equipped with
a map of the environment, which is divided into travessable
and non-traversable cells. A cell containing movable obsta-
cles or walls is labeled as poe-traversable, while a cell with
no obstacles is labeled as rraversalbde. Using this intemal
map, path planning can be solved using well-known algo-
rithms [1].

I outdoor scenarios, creating a similar map of the termin
might be challenging. A cell might be traversable only in a
apecific direction and by a specific robot: & wheeled robot
with limited poower might be able to descend, but not ascend,
a slope; a tall obot with a high center of mass might both
ascend and descend the same slope, but then capsize when
traveraing it feom side to side; a bicvele might hop on a side-
walk, but only if it approaches it from an orthogonal angle.
Mogeower, it might be difficult to anticipate all the difficulties
that a pobod may encounter: a legged robot may stumble in
a terrain with holes of a size comparable to it feer; vacuum
cleaner robots might get stuck over power conds; a car with
a low chassis may mol pass over a apeed Bump.

We consder the problem of estimating where and in which
directions a given 3D temain is waversable by a specific
grownd robot, using o geperal approach based on machine
leaming that applies regardless of the robot’s locomation
method (wheeled. tracked, legged. snake-like), physical char-
acteriatics (size, motor toegue |, and bow-level controller {anti-
akid algorithms for wheeled robots, festhold selection and
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gait selection algonthms for legeed robotz). We will define a
given terrain paich as focally rraversable in a given direction
if the robot, once placed in the center of the patch. can
proceed in that disection for at least a shon distance when
driven by s low-level contrel algorithm.

When robol control parameters are Kiown, traversability
is only affected by the charactenistics of the terrain around
the robot's position. Therefore, for a given mobot poze Y™™
with position poand orientation @, we consider a heightmap
patch centered in g oand rotated in such a way that the
robot is pointing towards the nght of the patch. The paich
is represented as a beightmap image whose pixels indicate
height values. We cast the patch traversability estimation as
a binary classification problem (with classes raversalde va
mewi-rraveriabie ), using such image as input. and solve it by
training a convolutional neural petwork (CRM

Teaining datasets are obfained by simulating the robot
on many procedurally generated training terrains, which
represent a vanety of obstacles such as ramips, steps, bumps,
hales and rugged areas; during such simulations, the robot
is spawned in random positions and orientations, and in-
atructed 1o proceed stralght ahead; s peogress 18 monitored
and instances for traversable (wheee the robot successfully
proceeds) and non-traversable (where the robot can't pro-
coed) heighumap patches are continuously recorded. Cnce
the model is kearmed from such iraining data, i can be
applied densely on any, possibly large, unseen heightmap.
Because accurate physical simulation is expensive, evaluating
the classifier on many points and omentations of a test terrain
is orders of magnitude faster than simulating the robot.

After reviewing relevant literature in Sm:tlm@ we in-
iroduce in Section [T the maln contribotien of this work:
a complete framework for traversability estimation. This
framewaork includes: i) an algorithm for procedural gener-
ation of wraining beightrmaps, i) a classifier for estimating
traversahility of heightmap patches, and iii) its application 1o
path planning. Expermental validation and resulis on real-
wiorld heighumaps are described in Section |1'E|

Il. RELATED WORK

Estimating terrain traversability is a fundamental capa-
hility fior animals and mobile ground obots (2] most or-
ganizma ane known o use visual perception for this task,
and most related works in robotics use on-board cameras
or depth sensors. Then, traversability can be estimated from
appearance cues, 3D perometry, or both [3]. In many cases,
the link between such input and traversability is leamed ina
supervised fashion. We first categorize related works by their
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input data, then focws on different ogions to gather training
information.

Inputs. When using appearance cues as inpuat. one possible
approach is to learn a classifier to directly classify traversahle
areas of the terrain in front of the robot [4], [5]. A mose
common approach 18 to first use a classifer o segment the
input image in a number of classes (e.g.. paved, rocky. prass,
obstacle), then assign to each segment a predetermined oost
for traversal, which may be infinite for segments Known o
be impazsable [6]. In either case, some works use generic
visual featwres [7] (such as texture descriptors] with stan-
dard clagsifiers (such as support vector machines or random
forests [8]), whereas others adopt deep learning technigues
auch as CHNs [1]. [9]. which operate on raw image data and
leam meaningful problem-specific visual features.

Geometry-based approaches use local [10] or global sen-
aory data to derive an elevation map of the terrain, which
15 a convenient spatial representation for ground robos [11].
Then, one option s to simulate 3 model of the robot on
different areas of such elevation map: this allows one o
explicitly test raverzability, or, in a simpler setup, o evaluate
the pose that the robot would azsume when lving on each
poant of the elevation map [12]. A more common approach
evaluates exch point of the elevation map by exiracting
simple bocal features (such as sloge, roughness, step height),
amd then estimate traversability either theough handerafied
rules, or using a learned classifier [13], [14], [L5].

O approach wses exclusively geometry  information
{(while in thiz paper we work under the assumption that
the heightmap is given in advance, nothing would change
if the data was scquired by an on-board sensor). Instead of
relving on high-level features, we feed raw elevation data
within each heightrnap patch to a CHN: 1o the best of our
knowledge, this is the first application of deep learning 1o
heightmap data for traversability estimation. By using a CRHNM
o extract problem-specific features. we leam which terrain
pattems could cause locomation problems to a specific robot,
without peior assumplions: as we discussed in Seﬂinum such
patierns may be complex. orientation-dependent amd counter-
intuitive; experimental results in Section [TV-A] confirm that
our approach performs better than a feature-based one,

Source of training data. Using a supervised learning
approach exempts one from the meed o manually define
the link between the input data and traversability: on the
other hand, it requires a set of labeled examples, whose
sipe, quality and representativeness are key to the final
performance: the strategy adopted to acgquire such training
data 15 an imyportant (amd sometimes, prevailing component
of all related literature [3]. Our approach exclusively relies
on training data scquired from simulations on procedurally-
generabed terrains: this allows us to cheaply generate large
datazers for data-hungry deep bearning models. This approach
hias not vet been attempbed in the traversability liberature, bui
training from simulations is a commaon strategy for leaming
manipulation of legged locomotion skills, especially when
reinforcemient learning bechniques are adopted [16]. [17].

Ome possible drawback of this choice is that the proce-

durally generated terraing may not be sepresentative of the
shape of seal temrains: this would yield classifers that suffer
from bad performance when predicting whether a simulated
robot can iraverse a testing terrain acquired from the real
world: our experiments in Section refute this hypothe-
&g, Another possible deawback is that simulation {of the
robot, the terrain, or their intersction) may not be realistic
enough: then, a classifier that iz accurate when predicting
the traverzability of a simulated robot would be insccurate
for a real robot. Our real robot experiments (Sections |'|.'E|
[A]and TV-D} suggest that, in two different environments, the
classifier outputs match the observed robot ability to traverse
obstacles; however, such environments have the same easy
characteristics of owr simulated environment: non-slippery,
aplid terrain. The predictive performance of our current
classifier on sandy, unstable or slippery environments would
b poor, unless such charscteristics are simulated doring
l.r:ujninglzl Agcurately predicting vehicles on soft ground is
an important research line [18], which may leverage ad-hoc
simulators validated with real-world data [19].

Transferring models learned in simulation to the real woeld
i3 a very active research topic in the manipulation litega-
ture [20. Instead of dealing with this issue. the raversability
literature acquires training data from the peal world; then,
associates observed input data o a ground-truth traversability
label. which can be determined in one of two ways.

The first option i8 o ose the robot's own experience.
Then, the robot needs a way to detect whether the area it
is passing 15 traversable o pot, using wheel slippage [21].
vibgation sensors [22), or visual odometry o check progress
{which is a possible extension for our approach, as we note
in Section [V].

A gecond option is o entrust labeling 1o a human: this
could be done in a direct, straightforward way (the robot
acquires data, a human marks esch input with a traversability
label, vielding a training set) [23], or wing sieategies to make
the process more efficient. For example, in [24] a homan
draws a path from a source o a target, and the system
infers which arzas the human purposefully avoided and
automatically uses such patches as non-traversable examples.

A early version of the present work, using a simplified
model and with a preliminary experimental evaluation, was
previously presented in [25].

III. TRAVEREABILITY BSTIMATION FRAMEWORK

Figure[Tillustrates the proposed framework for traversabil-
ity estumabion. Next, we describe how the simulation en-
vironment is set-up | Section . detail the process for
generating training and evaluation datasets (Section [[IE-E).
and finally describe classification approaches (Section [[IE-T).

A, Traversalnling frowe Striclation

Wi adopt the Gazebo simulator and the ODE physics
cngine [26] for aceurate physical simulation. We simualate the

"This a=esmnes that the whaole termain, both @ training and in 1esting, has
the same phosical characienstics; if it does not, additional inpm would be
meeded. = we foresee B M|mm
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Fig. 1. The robor model ness s simuolation os procedurally generaced
werrains {lefth vo pemerate dstasers linking heighiap packes with their
moversability (wopl; om tlese doimsets we erain classifiers 1 estinsale the
prohebality thet o gives hegghtmaop patch is eraversable or not (botom ). The
leamed classifier comectly predicts wrmain iraversahilay for & real robaot
frighny.

Pioneer 3-AT mobile robot (of size 49 cm = 5 e = 29 cm,
s Fjg_ID moving forward at a constant velocity of 15cm s
on an uneven terain whose shape is detesmined by a given
heightmap. We capture the robot’s trajectory on the termin
o exiract traversability informiation.

I} Helghimap Generanon: In onder 10 generate meaning-
ful training dasta, we need to simuolate the tobol moving
on interesting terrains that pose vared amd representative
challenges. This could be achieved by using data from peal
terrains, by manually creating interesting heightmaps, and'or
by synihesizing them using procedural generation technigues.
We follow exclusively the third option. This choice allows
us o generabe arbitranly large amoant of iraining data, and
cxplore an interesting research guestion: can we leam a
traversahility classifier from synthetic heightmaps that works
wiell on real heightmaps?

We generate 30 training terrains; the size of each generated
heightmap is 512 pe = 512 px that, when simulated, is scaled
o represent & surface of 10mx lm (== 2 e pe resolution).
Each terrain is generated by summing multiple sealizations
of random 20 simplex nodse [27] {a variant of Perlin noise
[28] frequently adopted in the procedural generation litera-
tupe [29]) wath different perods. For example, a beightmap
ohtained from simplex noise with period 30 e, scaled such
that it extends to a beight of 20 cm, yields a terrain with
medinm-sized simoeoth rocks; a perod of 100 with a 3m
height range wields a landscape with small steep hills, A
weighted sum of the two components yields rocky hills.
Within a given terrain, we modulate the weight of ome
compenent such that it spans the range 0 1w 1 along the =
axnis, and the weight of the other component such that it does
the same along the y axis. In this example, we would have
flar tereain &t (=, y) = {0,0) (both components have zero
wieight), rocks on flat ground at (=, @) = (L0 0] (oaly the
first component), smaooth hills at (x5 = (0. 10) (ooly the
second component). This ensures that & single map represents
a range of parareters, including ferrain that is neither too
aimple nos oo challenging.

Auddditbonal features such as holes, seps, bumps protruding
from a fat surface and rail-like indentations are generated
by applying varnous scalar functions to heightmap values:
cxamples of resulting training terrains are represented in

Fig.

2 Blowielanion Process: Each simulation beging by picking
one at random of the M) training terraing; the robot is set 1o
a random pose on the map and moves forward an constamt
velocity without steering. After the robot peaches the edge
af the map or gets stuck for some time, it is re-spawned 1o
a different pose on a different training terrain to generate a
new irajeciony.

For each trajectory, the robot poses amd their associated
heightmap patches are recorded. The heightmap patch as-
apciated o a pose is centred on the robod’s position and
oriented in such a way that the robot is facing towards the
right of the paich (see Fig. mlﬂjdl:“l!‘ topl. If and only if the
distance between the current pose X ™"} and a future pose
Xt 4+ T is greater than a threshold o and aligned with
the robot’s orientation, then the current patch is labeled as
traversable, Oniherwise the current paich is labeled as non-
traversable.

Figure El-]tt't illusirates the traversability labeling for
patches along a trajectory, with T = lsand o = 0.12m. The
robal traverses a set of smooth patches until it gets blocked
by a bump almost as high as the robot iself. As illosirated in
F’lg.@-:‘lghl.. we use this information to label the first patches
as traversable and the last patches as non-traversable.

B Deaser Generation

From each simulated trajectory (on average 3 8, we sam-
ple the robot pose and the comesponding heightmap patch
at N Hz. The patch and its traversability label represenis a
sample in the dataset.

We prodece a training dataset {450k samples, equaling
roughly 27 ki iravebed) using the 30 training terraing and a
synthetic evaluation dataset {150k samples) from 10 terrains
generated with a similar approach (see Section [lTT-AT).

Figure [3] il lustrates the patch extrsction process from the
trajectory in the synthetic map on the lefi. The height values
in each paich (Fig. [Fright) are offset in such a way that
the patch center {iLe. at the robot's position) is mapped
to height 0. This makes the patches independent on their
absolute height on the heighimap, a feature that does ot
affect wraversability.

For quantitatively evaluating our classifier in real-woeld
maps, we consider & scenarios, from which we extract a todal
of 150k samples, equaling roughly 21 km traveled. Three
of these scenarios are publicly-available [M1] heightmaps
from a mining guarey, the town of Sullens. and a Gravel
gty they have been acquired with a fixed-wing fAving robot
using strscture-from-maotion technbgees. One map was buaili
by a guadcopter equipped with a depth sensor, from an
indoor set-up in the ETH Awtonomous Svsberns Lab [31]
{ETH-ASL). Additionally, we consider bwo maps for gual-
itative assessment of iraversability estimation with a real
robot: Bors, a simple indoor map consisting of a floor with
horizontal bars with different width and height, manually

“In supplementary material we provide scesce code for generating our
rainisg dimsser asd an appendis describing the opproack s moee detail.
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Fig. 2.

Fig. 3. Lefi: irajeciory exiracied from a taining dieser; bt silboneine

and velkow arrow andicale the anitial pose. Kight visualation of some of
the resulung raversable |grees) and non-iraversohle (red) paiches.

built to verify if the learned model can properly estimate
the traversability of a real Pioneer 3-AT; Slope, an outdoors
acenario (mansally mapped with a Tango RGE-D sensor)
consiating of an imegular grass slope surrounded by a smonth
uphill walkway. The real robot’s performance in this scenario
is reponted in Section

Figure [ shows reference images of all the real-world
datazets (excluding the Bars map) and their corresponding
heightmap. Tahle |!| summarizes datasets and the maps they
have been obtained from. All datasets were penerated using
the robot madel described in Sec lICA] T = 15, d = 12em
amd a patch size eguivalent to 1.2m = 1.2 m.

. Tradnt e Traversahil r']'.'.- O Fui.v]_.ﬁe‘ Fx

We address the problem of estimating temain traversabil-
ity as classification on heightmap data. We compare two
altemative approaches: extracting descrptive features from
cach heightmap patch and then applyving standard statistical
classification techniques [8], or adopiing CHNs, a now-
atandard deep-learning approach which operates directly on
raw input data. In either case, the output of the classifier
indicates if a patch is traversable.

For the feature-hased approach, we compuie quantities
that provide traversability coes, such as the average terrain
ateepisess in the robot's motion direction (e, from left o
right of the patch), o the maximum beight of any seps in
patch. In our case, we compute the Histogram of Gradients
(HOG) of the heightmap patch, which inclhedes these pieces
of information (e.g., the gradient of a heightmap cormesponds
o thee local steepress), Computing HOG over 6 orientations,
B = Bpx per cell, and a block of 3 = 3 cella, resulis in a
descriptor with 324 features that we classify by means of a
Random Forest (RFy classifier [32] wath 10 rees,

In the CNN-based approach, i is expected thar the
network sutonomously learns meaningful, problem-specific

4 out of 30 procedurally genersied raning temmaiss, which include common termals Fealures such as bumps, rails, steps and bokes,

features: becawse the input data is high-dimensional and noe
priod knowledge of the problem is provided to the model.
this approach requires moee raining data, which however is
available from our extensive simulations, Our CHN is built
on the Keras [33] front-end powened by TensorFlow [34]: it
is composed by interbeaved convalutional and max-pooling
layers, a classic architecture that is well known 1o be suited
o visual pattern recognition problems [35]); a Gl pe = Gl e
input layer is followed by: a 3 = 3 comvolution layer with
5 outpat maps; a 3 o= 3 convelution laver with 5 output
maps, 4 2 = 2 Max-Pooling layer: a 3 = & comvolution
layer wath 5 output maps: a fully connected layer with 128
outpat newrons: & flly conmected layer with 2 output meanons
followed by a softmax layer {outputh, All layers implemen
the Rel Ul activation function. The network is trained for
10} epochs o minimize a calegorical cross-entropy loss
using the Adsdelia oplimizer. Following the current best
practices for visual pattern recognition CRMs [33], several
varations on this architecture have been evaluated with
minimal performance differences.

IV. EXPERIMENTAL RESULTS

The following sections detail the comparnson of the two
classifiers described in Section [[II-C] and an additional base-
line dummy classifer that always returns the class maost
freguent in the training set.

AL Classificanion Rezils

The performance of the three estimators on the evaluation
datasets is reported in Table E| W observe that the CHN
estimator outperforms both the baseling and featwre-hased
approzches both on syathetic and real-world beightmaps.
Performance is bower on the real datasets Sullens, Gravelpit
and Cuarmry than on synthetic evaluation data, probably
because of some elevation patterns. such &8 namow pasaages,
tight rails and bow barmers that may block the mobot, which
are not well represented in procedurally-generated iraining
data. Although the Sullens datased contains a limited variety
of interesting fervain features (mainly slopes, steps and
bumps), it illusirates that the classifier has a reasomable
performance on a common scenario. Many features of real
terrains such as slopes, holes, rails, steps and bumps are
corvectly classified in real datasets (see Fig. [and [T).

In order o validate whether the classifier is effective in
a real scenario, we built the Bars environment [Figurem
which featares two horizontal wooden bars with a rectangular
cross section as obstacles. One bar is Gem deep whereas
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Fig. 4 Beferemce images (o) and beightmaps (botiom) dor the 3 of the & real-world evaluation datnsets. Left 1o night: Mining quarry | 3], Salless | 30),
Girawelpit [3] (ane of three oress extracted from the same scenann ), ETH-ASLS 1) and Skope (ocgeeed aren comesponds o the Blue outlise).

the other is Senn deep. Both ame Gom high. We verified
that the robot is unable o traverse the former and can
very rarely traverse the latter; the classifier outputs very low
teaversshility probabilities for both, more interestingly. the
classifier cosrectly predicts that the robot would be able o
travierse the obstacle if it can climb a bar with only one of s
wheels (estimated probability about 30%); a video demon-
siration can be found in https://remareg.github. |
[foftraversability_estimakion| A mare exiensive
real-robot experiment in an outdoor scenario is meported in

Section [V-T]

B Traversabiliny Visualizason on the Quearry Draser

The Quarry dataset was generated from a mining quarey
map (see Fig. i} of 0L02km® [30]. This map contains
challenging roads and barviers designed for mining tucks.
To make the map more suitable for our robot, we re-scaled
the map o . of its original size.

For this analysis, we fix a direction and iterate over the
cntive heightmap extracting patches of Gl px = Gl px with
a siride of 5pe. This process is eqguivalent to translating
the robot’s position over the map while keeping a fixed
Ofientation. Figun:El-mp- shows the traverzability estimation
for the mining quarry for two ofientations, indicated by the
arrows. Traversability is represented as a colored overlay
on the sueface of the heightmap (raversable is green, non-
teaversable is orav)

The estimator comectly marks the main road (== 2 m wide)
as traversable. Wery steep or vertical slopes are recognized
as non-iraversable when going up but, dangerously, marked
traversable when going down. This particular result is con-
gruent with the definition of traversability we used. which
only considers whether the sobot can proceed bar does ot ac-
count for its safety, Slopes are always classified as traversable
downhill and. sometimes, transversally, Most of the rough
surface at the wop of the heightmap is correctly found as non-
teaversable. The orange frame in F'Lg_.|§|rep-uru the minimam
traversshility over 32 orientations: green areas are traversahle

Fig. 5. Top: Traversabilny esumation for the Quomy map dor mwo
onentmtions: H° fup) and 2707 [down). Bootom: Manimun eraverssbality
(nrasge frame) overlsy over 32 possible onentations. Green opacity indicates
wraversabality degres. Pioneer 2-AT s model is displayed for size companson.

in all directions; thiz vields a compact, intaitive visualization
but does not comvey directional information.

Traversable areas in the mining quarry correspond to min-
ing roads, fat erain, ghort bumps and slopes. Figure
the minimal traversabality map for the Sullens heightmap.
Strewts, pedestrian side-walks and garden entries are clearly
estimated as waversable. Challenging slopes uphill w the
central building (blee square) are classified with an average
confidence of traversability (translucent green).

. Compaefational cost

Training the traversability classifier requires o2 procedu-
rally generate tervains (few milliseconds); simulate the robot
on sech terrains to generate the 450k-sample raining datasets
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TABLE 1
Foi EACH DATASET WE BEFORT ACCURACY [ACC) AND THE AREA UNDER THE ROC CURVE (AUC) T COMPARE OUR AFPROACH (CHN) TO A
FEATURE BASED (FB) AND & BASELINE {BL} CLASSIFER.

Cuantimmive evalumion in sinsslatios

Dvanazel CHN FRE BL el - roden Sime Resolution
= Besis 1 (e oo miages ) e el Mipping

Twpe Manm: Samples  ACC AUC  A0C A ADC ALC
Sy Training 4501k - . - - - - - (10 = b = 2) 3 2

Evaluation 150k 926 WYMF MK AL (544 05ZT (10 = 1k = 2] 2 1 2

Q‘I:I.I.I'I}' LTS HLS HS0 725 0702 0542 Q4 2w dE w1k 2 Plxﬂd-'ﬁlln.g

Sullens 1Kk hA3d mER  THD 009 OS8ET Q501 0 30w Lk 3 Fized-wing
sl Girvelpic ik (LA32 E3Y 009 B2 0STT 0504 (100w Hp o= 4) = 3 3 Fized-wing
evalustion  ETH-ASL Hik (LAd? 921 789 EIT 0492 0511 TuTxl i Cumcopier

Shope Mk (e ETS  (Tal RTEO 0530 0.501 Yes TuTxldl 1 Haredheld

Hars Hik il YR (RO (REGS 0495 0458 Yes 0x =l 3 Caly

Fig. o Munimum traversability oveslay of the Sullens nsap over 52 possibde
ofiemations. Blue square zooms in @ regiom facing ihe cesml bulding.

{about one day): actwally train the CHN (abowt | hour on a
single MWidia Tesla K80 GFLN.

Once the classifier is trained, building traversability maps
requires to evaluate a large amount of patches: considering
a stride of 10cme and 32 orientations, we seed to evaluate
10k = 10 = 2 = 3200 patches per square meter, which takes
Films on an Intel 17 deskiop computer on CPL, and could
b casily parallelized to run on GPU; this timescale allows
to densely process maps at a pate compacable (o the time
needed to acquire them. The time needed for inference is
independent on the content of the patches.

The computational expense for simuolating a robot, in
contrast, depends on the complexity of the heightmap: in
our setup, which is not opiimized for speed. simulation
speed (excluding visualization) ranged from 0.1 = real time
for very complex maps (e.g.. quary) to [0x real time for
flar arcas, averaging at |= real time on relatively easy
terrain. Simulating the traversal of a 1m® area could be
approximated by simulating 32, 1m long, trajectonies, one
for each onentation: at a robot speed of 10 cm per second
amd 1x real time factor, this requires 3M) seconds, ie,

almost 1000 the time required by our approach. These
numbers may drastically change if consider the extra cost
for more sophisticated simolation {e_g.. for soft grownd). or
the speedup granted by future GPFLU-optimized simulstoss.

I Parh Plasidag on Probabilisne Traversalaline Maps

Traversability estimations can be used to plan a path 1o
a goal position which only passes through patches that are
traversable i the direction comesponding to the path’s bocal
orientation. In the following, we assume that the robot will
get stuck for crash, o end up in an unrecoverable stave) if
it attemipts o pass through a non-traversable patd‘-lﬂ

Wi assume that traversability probahilities of patches
along a path ane independent from each other, ie. that the
traversability along a path is Markovian. If we further assume
that the robot s able o rotate in place, the probability «
to traverse a path composed of segments (e, .... e ] is
given by =i{e;,....e,1] = [Tie, mle ). where m{e;) is the
probability 1o traverse a segment.

Henwewer, on unstructured terrains, the robot may not be
able to rotate in place everywhere. Following the same
pipeling introduced for traversability estimation, we train
a terieekality classifier to estimate the probability that the
robot, positioned in the center of a given patch, can rotate
in place by st least 457, clock or counter-clock wise. The
performance of these classifiers on the Synthetic and Cuaamry
evaluation datasets was (ACC (LB, AUC 0.874) and (ACC
Q.B28, ALNC 0.834) respectively.

We compute paths on a graph (V. E} of nodes regulasly
distrbuted on & hosizontal grid of poses of spatial side
18 ey and angular side 45°. Edges in & comprise rotations
in place by 45 and segments conpecting poses of the
same onientation that are spatial neighbors. For cach edge
e = [n,m)] £ E, we compute length and traversal probability
wleh =(e) ia the output of the traversability or twrnability
classifiers applied to a patch centered and oriented along o
{see Fig.[Tright top).

“This is a pessimistsc nssumpiics because this is not always the case: 2

robl miempling i pass throsgh o wall, for example, is unsbdes o procesd
big mray be capable of wrmng back and tsking another path.
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Fig. 7. Left o selection of Paretn opamal pachs on e guarry map for res
pairs of source farrow) and warget {white square) locatoas. The paths are
colored hy traversal probability from red (non-traversabde) o gresn (sunely
mversable). Comespomding valoes for traversal peohabalicy sed length of
cach wajectory are shown im the ssde whies. Rght wpe o ponwes of the

planning graph on the quarmy map Nodes are ploced on & reguler god a
15 cm. The blue edge's rversal probabiliny is estimared by applying the

classitier on & 1.2« 1.2 m paich (light bluep centered at the edge origin
and directed along the edge. Bobot's silbcaseiie is shown for size oomparison.
Buight botboan: The trasde -off berween path lesgeh and iraversahiley for Pareio
optimel paths of e hotwam sodrce-age locasan. Cobored dols corme spand
Lo paths drawn o the left Bgure.

Figure Eﬁght bottom illusirates the solation of the muli-
abjective problem of computing the best paths with nespect
o bength (minimized) and iraversability (maximized). A
ratiomal agent would choose among the se1 of Pareto-optimal
paths. In this context, a path is Pareto-optimal if there exisis
no altemative path that is both more traversable and shorer.
The shortest path (represented in red in Fig. Elefl]- is Pareto-
optimal, but will have in most cases a very low traversability
probability. The path with the maximum traversability (nep-
resented in green) will also be Pareto-optimal, but may be
unnecessanly long: between the two extremes, a potentially
very large set of Pareto-optimal paths exist, spanning the
trade-off between traversability and length.

Real-rdnot expertimend: We tesfed how our approach
applies 1o a real Pioneer 3-AT robot in an owtdeor grass
alope (Slope map in ﬁgE. First we use a Tango device,
hamdheld at 1m from the ground pointing downwards, o
build a heightmap map of the area. Then we apply our
approach 1o compute the oriented traversability maps and the
traversahility graph. We then evaloate the safest {ie. with
maximal fraversability) path from a sousce position (blse
silbouette of the robot) to a desired position in the map
{white marks). The safest way for the robot o reach the top
area (sguare mark) is o follow the smooth side-walk ramp
uphill, aveiding the grass slope which has an iregular shaped
terrain. This path is estimated as certainly traversable: we
verified this is in fact a traversable path by teleoperating the
piobat through it The maximal-traversability path that reaches
the circle mark involves first reaching the square mark uphill

Fig. 4. Paths of maximal iraversahility from the robot's inivisl pose
(bl salbometse) b three different goals in the Slope map. Paths are colomed
acconding wo teeir eraversal peohabalivy, from red (low) o green (Bagh) The
bldue overlay represents the asachabitin: map from the rebol’s inioal pose:
blue (cemaimly reachable) w gray (censnly not reachable).

on the sidewalk, then heading down on the grassy slope for
a short distance: even though it is long. this path is in fact
the maost rational to reach such point. because traversing the
grass slope uphbill or transversally is challenging. The star
mark lies on a difficali-to reach area in the middle of the
grasgy slope. The point is not reachable from the sidewalk
abowe it, because such area of the sidewalk is Aanked by
amall step that iz comectly estimated as not iraversable,
The maximal-traversability path, instead, accesses the grass
in a point left to the robot, then proceeds uphill avoiding
obataches and excesaively steep or rugged areas; the path has
a traversabiality peobahility of (.21, amd we were unable to
successfully teleaperste the robot through it because it was
blocked by a bump.

The reacledlalive map in Fig[8] illustrates which parts of
the temain the robot can reael from its current pose. For a
given target location. it is defined by the maximal wraversal
probability among all paths from source 1o tasget.

V. DISCUSSION AND COMCLUSTONS

We presented a complete framework for raversability
estimation that casts the problem as a beightmap classifica-
tion task, and applies o any modality of robot locomotion.
Classifiers traimed on simulation data wsing procedurally-
generated tesraing capture relevant terrain characteristics and
can efficiently and accurately estimate oriented traversability
maps on large unseen real-world terrains. Such maps can be
usaed tor plan paths exploring the trade-off between length (o
be minimized) and peobability of being raversable (o be
maaximized).

Our approach does not capiure the robot dynamics, such
as the speed with which the robot approsches an obstacle:
we limit our attention 1o slow robots operating on rugged
terrains, where dynamic aspects have negligible impact. We
will consider dynamic data as an additional input of our
classifier as we move bwards scenarios where complex
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locomotion s needed.

We remark two important limitations of our approach. 1)
Wiz assurse that the terrain's 30 shape is the only factor influ-
encing its traverzability; this is an accepiable approximation
in some scenarios (e.g., on solid ground whese friciion is
not a key factor), but is inadequate in many others, such as
on samd, mud, wet or slippery enviconments. 2 We oaly use
simulated data for training. but in practice. simulations rarely
manage to accurabely replicate the real world.

I order o tsckle both limitations, future work will aim
at wsing real data for training {as in [13]) which fies well
our concepiual framework. Techmically, this requires that the
bl can associate the heightmap patches i's traversing
with an outcome {secozssfully traversed of mot) in opder
to accurmulate experience that can be wsed for training mew
models or refining existing ones. Mote that, in this scenario,
the pobot would automatically leasn the effects of soft ground
o alipping on raversabality.

A notable exception are scenarios in which 3D shape alone
is insufficient to predict traversability: for example, a gentle
paved slope could be raversable, unlike a gentle muddy
slope which has the same shape. In our framework, ome
could differentiate these cases by kearning different models
for different terrain types (o be previously classified based
on their appearance as in [36]) or by training a single model
that uses terrain appearance as an additional input 16 addition
o 30 shape.
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